Planar Object Tracking Benchmark in the Wild
Fig. 1 Comparison of evaluated trackers using precision plots. The precision at the threshold tp=5 is used as a representative score.
Tracker | Reference |
CNN-GM | I. Rocco, R. Arandjelovic, and J. Sivic, “Convolutional neural network architecture for geometric matching,” PAMI, 2018. |
DeepCompare | S. Zagoruyko and N. Komodakis, “Learning to compare image patches via convolutional neural networks,” CVPR, 2015. |
ESM | S. Benhimane and E. Malis, "Real-time image-based tracking of planes using efficient second-order minimization," IROS, 2004. |
FERNS | M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, "Fast keypoint recognition using random ferns," PAMI, 2010. |
GIFT | Y. Liu, Z. Shen, Z. Lin, S. Peng, H. Bao, X. Zhou, "GIFT: learning transformation-invariant dense visual descriptors via group cnns," NeurIPS , 2019 |
GO-ESM | L. Chen, F. Zhou, Y. Shen, X. Tian, H. Ling, and Y. Chen, "Illumination insensitive efficient second-order minimization for planar object tracking," ICRA, 2017 |
GPF | J. Kwon, H. S. Lee, F. C. Park, and K. M. Lee, "A geometric particle filter for template-based visual tracking," PAMI 2014 |
IC | S. Baker and I. Matthews, "Lucas-kanade 20 years on: A unifying framework," IJCV 2004 |
IVT | D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental learning for robust visual tracking," IJCV 2008 |
LIFT | K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant feature transform,” ECCV, 2016. |
LISRD | R. Pautrat, V. Larsson, M. R. Oswald, M. Pollefeys, “Online invariance selection for local feature descriptors,” ECCV, 2020. |
L1APG | C. Bao, Y. Wu, H. Ling, and H. Ji, "Real time robust l1 tracker using accelerated proximal gradient approach," CVPR 2012 |
MatchNet | X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “Matchnet: Unifying feature and metric learning for patch-based matching,” CVPR 2015. |
MCPF | T. Zhang, C. Xu, and M.-H. Yang, “Learning multi-task correlation particle filters for visual tracking,” PAMI 2018. |
PFNet | R. Zeng, S. Denman, S. Sridharan, C. Fookes, “Rethinking planar homography estimation using perspective fields,” ACCV, 2018. |
SCV | R. Richa, R. Sznitman, R. Taylor, and G. Hager, “Visual tracking using the sum of conditional variance,” IROS, 2011. |
SIFT | D. G. Lowe, "Distinctive image features from scale-invariant keypoints," IJCV 2004 |
SOL | S. Hare, A. Saffari, and P. H. Torr, “Efficient online structured output learning for keypoint-based object tracking,” CVPR, 2012. |
SOSNet | Y. Tian, X. Yu, B. Fan, F. Wu, H. Heijnen, and V. Balntas, “Sosnet: Second order similarity regularization for local descriptor learning,” CVPR, 2019. |
SuperGlue | P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learning feature matching with graph neural networks,” CVPR 2020 |
SURF | H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features (surf)," CVIU 2008 |
UDH | T. Nguyen, S. W. Chen, S. S. Shivakumar, C. J. Taylor, and V. Kumar, “Unsupervised deep homography: A fast and robust homography estimation model,” RAL, 2018. |